# The Isolation from Diethyl Ether of Ionic [(Me<sub>2</sub>N)<sub>3</sub>PI]I and [(CH<sub>2</sub>=CHCH<sub>2</sub>)<sub>2</sub>PhPI]I, and the Crystallographically Characterised Molecular 'Spoke' Structure PhMe<sub>2</sub>PI<sub>2</sub><sup>†</sup>

Neil Bricklebank,<sup>a</sup> Stephen M. Godfrey,<sup>\*,a</sup> Helen P. Lane,<sup>a</sup> Charles A. McAuliffe,<sup>\*,a</sup> Robin G. Pritchard<sup>a</sup> and Jose-Maria Moreno<sup>b</sup>

<sup>a</sup> Department of Chemistry, University of Manchester Institute of Science and Technology, Manchester M60 1QD, UK

<sup>b</sup> Departmento de Quimica Inorganica, Universidad de Granada, Granada 18071, Spain

Ten new compounds of stoichiometry  $R_3Pl_2$  [ $R_3 = (o-MeOC_6H_4)_3$ ,  $(o-MeOC_6H_4)_2Ph$ ,  $(o-MeOC_6H_4)Ph_2$ ,  $(p-FC_6H_4)_2Ph_2$ ,  $(P-CH_2CH_2)_3$  or  $(Me_2N)_3$ ] have been prepared by the direct reaction of PR<sub>3</sub> and I<sub>2</sub> in diethyl ether solution. The compounds have been characterised by Raman and solid-state <sup>31</sup>P-{H} magic angle spinning (MAS) and solution NMR spectroscopy. Solid-state <sup>31</sup>P-{H} MAS NMR studies indicate that the predominant solid-state species is the molecular 'spoke' structure  $R_3P-I-I$ ; however, in some cases a minor peak was also assignable to the ionic species,  $[R_3PI]I$ . Additionally, solid-state <sup>31</sup>P-{H} MAS NMR studies of  $(Me_2N)_3PI_2$  and  $(CH_2=CHCH_2)_2PhPI_2$  indicate that, in contrast to all other compounds of stoichiometry  $R_3PI_2$  prepared in diethyl ether, they are exclusively ionic,  $[R_3PI]I$ . The crystal structure of PhMe\_2PI\_2 shows it to have the molecular 'spoke' geometry, PhMe\_2P-I-I, d(I-I) = 3.408 Å, previously observed for Ph<sub>3</sub>PI<sub>4</sub>, in agreement with solid-state <sup>31</sup>P-{H} MAS NMR results.

Although the adducts formed between tertiary phosphines and dihalogens have received significant study over the past 100 years,<sup>1,2</sup> it is only very recently that the precise structural nature of compounds of stoichiometry  $R_3PI_2$  has been established, especially in the solid state.<sup>3-5</sup>

What has emerged from recent studies  $^{3-5}$  is that the structure of the solid compounds is crucially dependent on the solvent in which they were prepared. For Ph<sub>3</sub>PI<sub>2</sub><sup>6</sup> and Me<sub>3</sub>PI<sub>2</sub>,<sup>7,8</sup> prepared in nitrobenzene, vibrational spectra pointed to a solidstate ionic [R<sub>3</sub>PI]I structure. These results are in agreement with all solution studies on these compounds, principally the conductimetric titration studies reported by Harris and coworkers,<sup>9</sup> in which it was found that all the compounds of stoichiometry R<sub>3</sub>PI<sub>2</sub> (R = Ph, *n*-octyl, *n*-hexyl or *n*-butyl) completely ionise in acetonitrile solution to form [R<sub>3</sub>PI]I.

Other work has also established the delicate balance between ionic and molecular forms for compounds of stoichiometry  $R_3PX_2$ . For example, Gates and co-workers<sup>10</sup> have prepared both an ionic [Ph<sub>3</sub>PCl]Cl, and a molecular trigonalbipyramidal form of Ph<sub>3</sub>PCl<sub>2</sub>, the latter being synthesised by the passage of chlorine gas over the surface of a toluene solution of PPh<sub>3</sub>. Dillon and Waddington<sup>11</sup> prepared a sample of Ph<sub>3</sub>PI<sub>2</sub> from nitrobenzene solution and characterised it using <sup>31</sup>P-{H} solid-state NMR spectroscopy. From the solid-state <sup>31</sup>P-{H} NMR shift of  $\delta$  42.8 it was concluded that the compound is ionic, [Ph<sub>3</sub>PI]I, in the solid state.

However, we have recently reported <sup>3,4</sup> the synthesis of  $Ph_3PI_2$  from diethyl ether solution, *i.e.* a much less polar solvent, and have shown that this sample has a four-co-ordinate molecular 'spoke' structure,  $Ph_3P$ -I-I, from crystallographic and solid-state <sup>31</sup>P-{H} magic angle spinning (MAS) NMR studies. Extensive studies on compounds of stoichiometry  $R_3PI_2$  isolated from diethyl ether indicate that all the compounds  $R_3PI_2$  ( $R_3 = Ph_3$ ,  $PhMe_2$  or  $Me_3$ ) adopt this

molecular four-co-ordinate structure in the solid state and that this structure may be common for compounds of this stoichiometry.<sup>3,4</sup> In CDCl<sub>3</sub> solution all the compounds ionise completely to form  $[R_3PI]I$ , in agreement with previous studies.<sup>9</sup>

We now report the synthesis and characterisation of a further series of compounds of stoichiometry  $R_3PI_2$  [ $R_3 = (o-MeOC_6H_4)_3$ ,  $(o-MeOC_6H_4)_2Ph$ ,  $(o-MeOC_6H_4)Ph_2$ ,  $(p-FC_6H_4)_2Ph$ ,  $(p-FC_6H_4)Ph_2$ ,  $(p-CH_2=CHC_6H_4)Ph_2$ ,  $(CH_2=CH-CH_2)_2Ph$ ,  $(C_6H_{11})Ph_2$ ,  $(PhCH_2CH_2)_3$  or  $(Me_2N)_3$ ] prepared in diethyl ether, none of which has been previously reported. In agreement with previous studies, all the compounds ionise in CDCl<sub>3</sub> solution. However, the solid-state <sup>31</sup>P-{H} MAS NMR spectra of  $(Me_2N)_3PI_2$  and  $(CH_2=CHCH_2)_2PhPI_2$  clearly show them to be ionic [ $R_3PI_3$ ]I, in the solid state, in contrast to the four-co-ordinate molecular compounds  $R_3PI_2$  ( $R_3 = Ph_3$ , PhMe<sub>2</sub> or Me<sub>3</sub>).

## **Results and Discussion**

Table 1 lists the diiodotriorganophosphorus compounds synthesised in this study. The compounds are readily prepared by the reaction of equimolar amounts of molecular iodine with the tertiary phosphine in dry diethyl ether under argon for three days according to the published method.<sup>1</sup>

<sup>31</sup>P-{H} NMR Spectra.—(a) CDCl<sub>3</sub> solution spectra. The solution <sup>31</sup>P-{H} NMR spectra of the compounds recorded in CDCl<sub>3</sub> indicate complete ionisation of  $R_3PI_2$  to  $[R_3PI]I$  in this solvent, Table 1. Addition of a further equivalent of diiodine to these diiodotriorganophosphorus compounds to produce the tetraiodotriorganophosphorus compounds,  $[R_3PI]I_3$ , resulted in a pronounced darkening of the solution (due to  $I_3^-$  formation) but did not result in any change in the position of the <sup>31</sup>P-{H} resonance. The formation of the  $I_3^-$  ion was confirmed by the presence of bands at 366 and 294 nm in the UV/VIS spectra of all the compounds.<sup>12</sup> The tetraiodotriorganophosphorus compounds.

<sup>†</sup> Supplementary data available: see Instructions for Authors, J. Chem. Soc., Dalton Trans., 1995, Issue 1, pp. xxv-xxx.

|                                                          |        | Analysis" (%) |           |             |                            |                          |
|----------------------------------------------------------|--------|---------------|-----------|-------------|----------------------------|--------------------------|
| Compound                                                 | Colour | С             | Н         | I           | $\delta({}^{31}P-{H})^{b}$ | $\tilde{v}(P-I)/cm^{-1}$ |
| $(o-MeOC_6H_4)_3PI_2$                                    | Brown  | 39.3 (41.6)   | 3.6 (3.5) | 41.9 (41.9) | 50.3                       | 152                      |
| $(o-MeOC_6H_4)_2PhPI_2$                                  | Yellow | 42.0 (41.7)   | 3.3 (3.3) | 43.7 (44.1) | 47.5                       | 144                      |
| $(o-MeOC_6H_4)Ph_2PI_2$                                  | Yellow | 42.1 (41.8)   | 2.8 (3.1) | 46.1 (46.5) | 46.8                       | 150                      |
| $(p-FC_6H_4)_2PhPI_2$                                    | Yellow | 39.1 (39.1)   | 3.4 (2.4) | 44.3 (46.0) | 44.3                       | 168                      |
| $(p-FC_6H_4)Ph_2PI_2$                                    | Yellow | 39.2 (40.4)   | 2.7 (2.6) | 46.7 (47.6) | 41.8                       | 175                      |
| $(p-CH_{2}=CHC_{6}H_{4})Ph_{2}PI_{2}$                    | Yellow | 43.7 (44.3)   | 3.3 (3.1) | 43.7 (44.1) | 40.4                       | 175                      |
| (CH <sub>2</sub> =CHCH <sub>2</sub> ), PhPl <sub>2</sub> | Yellow | 33.2 (32.1)   | 3.7 (4.5) | 55.7 (56.5) | 8.8                        | 205                      |
| $(C_6H_{11})Ph_2PI_2$                                    | Yellow | 41.2 (41.4)   | 4.0 (4.0) | 48.6 (48.7) | 52.7                       | 179                      |
| (PhCH <sub>2</sub> CH <sub>2</sub> ),PI                  | Yellow | 48.3 (48.0)   | 4.8 (4.5) | 41.8 (42.3) | 82.0                       | 163                      |
| $(Me_2N)_3PI_2^c$                                        | Peach  | 17.4 (17.3)   | 4.6 (4.3) | 60.9 (60.9) | 25.4                       | 222                      |
| PhMe, PI,                                                |        | 24.6 (24.5)   | 3.1 (2.8) | 64.6 (64.8) | 61.9                       | 204                      |

Table 2 Solid-state  $^{31}P\-\{H\}$  MAS NMR data for selected  $R_3PI_2$  compounds"

|                                                                                     | δ( <sup>31</sup> P-{H})           |                               |                            |  |
|-------------------------------------------------------------------------------------|-----------------------------------|-------------------------------|----------------------------|--|
|                                                                                     | Solid state                       |                               |                            |  |
| Compound                                                                            | Molecular<br>R <sub>3</sub> P–I–I | Ionic<br>[R <sub>3</sub> PI]I | CDCl <sub>3</sub> solution |  |
| $(p-FC_6H_4)_2PhPI_2$                                                               | -22.2                             | 42.8                          | 44.3                       |  |
| $(o-MeOC_6H_4)_2PhPI_2$                                                             | -41.7                             |                               | 47.5                       |  |
| $(o-MeOC_6H_4)_3PI_2$                                                               | -33.1                             |                               | 50.3                       |  |
| $(C_6H_{11})Ph_2PI_2$                                                               | 10.3                              | 52.1                          | 52.7                       |  |
| (PhCH <sub>2</sub> CH <sub>2</sub> ) <sub>3</sub> PI <sub>2</sub>                   | 19.9                              | 89.7                          | 82.0                       |  |
| (o-MeOC <sub>6</sub> H <sub>4</sub> )Ph <sub>2</sub> PI <sub>2</sub>                | -28.1                             | 42.2                          | 46.8                       |  |
| (p-CH <sub>2</sub> CHC <sub>6</sub> H <sub>4</sub> )Ph <sub>2</sub> PI <sub>2</sub> | -27.7                             | 42.2                          | 40.4 <sup>b</sup>          |  |
| (CH <sub>2</sub> =CHCH <sub>2</sub> ) <sub>2</sub> PhPI <sub>2</sub>                |                                   | 6.9                           | 8.8                        |  |
| $(Me_2N)_3PI_2$                                                                     |                                   | 25.7, 26.6,                   | 25.4                       |  |

<sup>*a*</sup> All shifts recorded relative to 85% phosphoric acid standard. <sup>*b*</sup> Also contains a peak at  $\delta$  25.6.



Fig. 1 The solid-state  $^{31}\text{P-}\{H\}$  MAS NMR spectrum of  $(C_6H_{11})\text{-}Ph_2PI_2$ 

solution <sup>3,9</sup> and, since they display identical shifts in the <sup>31</sup>P-{H} NMR spectra to that of the corresponding diiodotriorganophosphorus compounds, then the latter must completely ionise to form  $[R_3PI]I$  in CDCl<sub>3</sub> solution. The <sup>31</sup>P-{H} NMR values for  $(CH_2=CHCH_2)_2$ PhPl<sub>2</sub> and  $(Me_2N)_3$ Pl<sub>2</sub> appear to be rather low,  $\delta$  8.8 and 25.4, respectively, when compared to the other diiodotriorganophosphorus compounds described herein and previously reported.<sup>3</sup> However, in keeping with the other compounds described, addition of a further equivalent of diiodine to produce  $[R_3PI]I_3$  did not result in a change in position of the  ${}^{31}P{}{H}$  NMR spectrum indicating that, as expected, both of these compounds ionise to form [R<sub>3</sub>PI]I in CDCl<sub>3</sub> solution.

(b) Solid-state spectra. With the exception of  $(Me_2N)_3PI_2$  and  $(CH_2=CHCH_2)_2$ PhPI<sub>2</sub> the solid-state NMR data indicate that the predominant solid-state species is molecular  $R_3P-I-I$ . However, in five of the samples,  $(C_6H_{11})Ph_2PI_2$  (Fig. 1), (p- $FC_6H_4)_2PhPI_2$ ,  $(PhCH_2CH_2)_3PI_2$  (Fig. 2), (o-MeOC<sub>6</sub>H<sub>4</sub>)- $Ph_2PI_2$  and  $(p-CH_2=CHC_6H_4)Ph_2PI_2$ , we also observed significant peaks assignable to the ionic [R<sub>3</sub>PI]I species, Table 2. The reason for the simultaneous formation of molecular R<sub>3</sub>P-I-I and ionic [R<sub>3</sub>PI]I remains unknown. The solid-state <sup>31</sup>P-{H} NMR spectrum of (PhCH<sub>2</sub>CH<sub>2</sub>)<sub>3</sub>PI<sub>2</sub> is illustrated in Fig. 2. The proportion of the two species (covalent:ionic) is approximately 95:5. Clearly, although this compound is predominantly molecular,  $R_3P$ –I–I, a small but significant amount of the ionic species, [R<sub>3</sub>PI]I is also present as shown by comparison with solution values. Nevertheless, this illustrates the interesting structures adopted by compounds of stoichiometry R<sub>3</sub>PI<sub>2</sub> and their close proximity to the ionic/covalent structural borderline. Despite the simultaneous existence of an ionic and a molecular form, the predominant solid-state structures for all the compounds, except for [(Me<sub>2</sub>N)<sub>3</sub>PI]I and  $(CH_2=CHCH_2)PhPI_2$ , is the molecular structure  $R_3P-I-I$ .

The solid-state  ${}^{31}P{}{H}$  NMR spectrum of  $(Me_2N)_3PI_2$  is illustrated in Fig. 3. In contrast to the compounds  $R_3 PI_2(R_3 =$ Ph<sub>3</sub>, PhMe<sub>2</sub> or Me<sub>3</sub>),<sup>1.4</sup> and the R<sub>3</sub>PI<sub>2</sub> [R<sub>3</sub> =  $(p-FC_6H_4)_2$ Ph, (*o*-MeC<sub>6</sub>H<sub>4</sub>)Ph, (*o*-MeC<sub>6</sub>H<sub>4</sub>)<sub>3</sub> or (C<sub>6</sub>H<sub>11</sub>)Ph<sub>2</sub>] compounds described herein, (Me<sub>2</sub>N)<sub>3</sub>PI<sub>2</sub> has a solid-state <sup>31</sup>P-{H} NMR spectrum exhibiting three peaks of close proximity at  $\delta$  25.7, 26.6 and 27.3, *i.e.* values in excellent agreement with the solution value recorded in CDCl<sub>3</sub>,  $\delta$  25.4, for the ionic species [(Me<sub>2</sub>N)<sub>3</sub>-PI]I and  $[(Me_2N)_3PI]I_3$ . Clearly this diiodotriorganophosphorus compound and (CH2=CHCH2)PhPI2 represent unique examples of exclusively ionic compounds in the solid state, [R<sub>3</sub>PI]I, prepared from diethyl ether. The ionic nature of these compounds is in direct contrast to other compounds of this stoichiometry, prepared from diethyl ether solution, which have been shown by solid-state MAS <sup>31</sup>P-{H} NMR spectroscopy  $[R_3 = (o-MeOC_6H_4)_3, (o-MeOC_6H_4)_2Ph, Ph_3,$  $PhMe_2$  or  $Me_3$ ] and crystallographic methods ( $R_3 = Ph_3$  or  $PhMe_2$ ) to exclusively adopt the molecular four co-ordinate geometry  $R_3P$ -I-I,<sup>3,4</sup> and the compounds (*o*-MeOC<sub>6</sub>H<sub>4</sub>)Ph<sub>2</sub> and  $(C_6H_{11})Ph_2$  described herein which exist predominantly as the molecular species, R<sub>3</sub>P-I-I, with evidence for the existence of some of the ionic [R<sub>3</sub>PI]I form.

Moreover, the ionic nature of  $[(Me_2N)_3PI]I$  and  $[(CH_2=CH-CH_2)PhPI]I$  cannot simply be explained by the existence of trace quantities of moisture in the solvent since, firstly, rigorously anhydrous and anaerobic conditions were applied (see Experimental section) and, secondly, the addition of trace quantities of moisture to  $R_3PI_2$  solutions in acetonitrile has



Fig. 2 The solid-state  $^{31}P\-\{H\}$  MAS NMR spectrum of (Ph-CH\_2CH\_2)\_3Pl\_2



Fig. 3 The solid-state  ${}^{31}P{H}MAS NMR$  spectrum of  $[(Me_2N)_3PI]I$  (S = spinning sideband)

been shown by Emeleus and Harris<sup>13</sup> to result in the isolation of the hydrolysis product,  $[R_3PH]I$ . Therefore,  $[(Me_2N)_3PI]I$ and  $[(CH_2=CHCH_2)_2PhPI]I$  are the only known examples of ionic diiodotriorganophosphorus compounds isolated from diethyl ether and further underlines the close ionic/molecular borderline for compounds of stoichiometry  $R_3PX_2$ . The existence of three peaks in the solid-state <sup>31</sup>P-{H} MAS NMR spectrum of  $[(Me_2N)_3PI]I$ , all of very similar shift, are difficult to explain.

Raman Spectra.—The frequency of the Raman band assigned to v(P-I) is also given for each compound, Table 1. None of the compounds described have previously been the subject of a Raman spectroscopic study, but assignment of the band to v(P-I) can be made with confidence by comparison with the Raman spectra of other compounds of this stoichiometry recorded by us.<sup>3,4</sup> Moreover, no other band occurs in this region of the spectrum.

As expected, the diiodotriorganophosphorus compounds containing electron-withdrawing groups exhibit lower frequency bands and those containing more basic tertiary phosphine groups have the highest v(P-I) wave numbers. In particular the v(P-I) value for  $(Me_2N)_3PI_2$ , 222 cm<sup>-1</sup>, is appreciably higher than those recorded for the other diiodotriorganophosphorus compounds, indicating a strong P–I bond in this compound, as would be predicted.

*Crystal Structure of* PhMe<sub>2</sub>PI<sub>2</sub>.—Single-crystal X-ray crystallographic studies have been performed on the molecular

compounds Ph<sub>3</sub>PI<sub>2</sub><sup>4</sup> and Bu<sup>1</sup><sub>3</sub>PI<sub>2</sub>.<sup>5</sup> The I-I bond lengths were found to be 3.162(1) and 3.332(2) Å, respectively. We have previously reported<sup>4</sup> the solid-state <sup>31</sup>P-{H} MAS NMR spectrum of PhMe<sub>2</sub>PI<sub>2</sub>, which indicates that this compound also adopts the four-co-ordinate molecular structure R<sub>3</sub>P-I-I. Since the I-I interaction in PhMe<sub>2</sub>P-I-I must constitute a covalent bond (from solid-state  ${}^{31}P-{H}$  NMR studies) we were intrigued to know its exact length and thus how weak a bond it represents, since previous studies have shown that the I-I bond considerably weakens upon increasing basicity of the tertiary phosphine. We thus grew crystals of PhMe<sub>2</sub>PI<sub>2</sub> from diethyl ether solution at ca. 0 °C. The pale yellow crystals were isostructural with Ph<sub>3</sub>PI<sub>2</sub> and exhibit the molecular structure PhMe<sub>2</sub>P-I-I, Fig. 4, in agreement with solid-state  ${}^{31}P{}{H}$ NMR data. However, as expected, considerable lengthening of the I-I bond has occurred, the d(I-I) in PhMe<sub>2</sub>PI<sub>2</sub> being 3.409(1) Å (cf. van der Waals radius of diiodine, 4.3 Å; d(I-I) in molecular iodine, 2.67 Å). Selected bond lengths and angles for PhMe<sub>2</sub>PI<sub>2</sub> are given in Table 3 and fractional atomic coordinates for the non-hydrogen atoms are listed in Table 4. This is an interesting result, since it clearly shows that although the I-I bond is lengthened by almost 0.8 Å relative to diiodine, it still constitutes a covalent I-I bond and illustrates the lengthening of an X-X (X = halogen) bond which can occur in chargetransfer adducts. The lengthening of I-I bonds has also been reported in two compounds of stoichiometry Ph<sub>3</sub>PI<sub>4</sub> by Cotton and Kibala,14 I-I linkages of between 2.82 and 3.74 Å being

#### Conclusion

observed.

The studies reported here and our previous studies <sup>3,4</sup> show that in diethyl ether solution the vast majority of  $R_3P$  compounds form molecular charge-transfer complexes with  $I_2$ , which in the solid state have a four-co-ordinate molecular 'spoke' structure, R<sub>3</sub>P-I-I. In all of these complexes the I-I bond considerably lengthens  $[d(I-I): Ph_3PI_2, 3.16 Å^4; Bu'_3PI_2, 3.33 Å^5; PhMe_2PI_2,$ 3.41 Å] upon adduct formation [d(I–I) in I<sub>2</sub> = 2.67 Å], as expected, since electron density is put into the  $\sigma$ -antibonding orbitals of the dijodine by the electron donor,  $R_3P$ . Not only is this phenomenon apparent from crystallographic data, but it is also reflected in the v(P-I) values from the Raman spectra. Interestingly, for the solid compounds  $(C_6H_{11})Ph_2PI_2$  and  $(p-FC_6H_4)_2PhPI_2$ , there is evidence for the simultaneous existence of both the ionic and the molecular forms, but for [(Me<sub>2</sub>N)<sub>3</sub>PI]I and [(CH<sub>2</sub>=CHCH<sub>2</sub>)<sub>2</sub>PhPI]I only the ionic structure prevails, although all the compounds were prepared from diethyl ether. The structures adopted by R<sub>3</sub>PI<sub>2</sub> compounds (ionic or covalent) are clearly critically dependent on R.

#### Experimental

The moisture sensitivity of compounds of formula  $R_3PI_2$  has previously been stressed and all the compounds described herein were prepared according to the previously published method, *viz*. the direct reaction of tertiary phosphine with diiodine in rigorously dry diethyl ether.<sup>1</sup> Elemental analyses were performed by the UMIST Microanalytical Service and the results are presented in Table 1. Raman spectra and <sup>31</sup>P-{H} solid-state MAS NMR and solution NMR spectra were recorded as previously described.<sup>3</sup>

X-Ray Crystallography.—A trapezoid crystal  $(0.3 \times 0.2 \times 0.2 \text{ mm})$  was mounted in a Lindeman tube under drybox conditions (argon). All measurements were performed on a Rigaku AFC6S diffractometer using graphite-monochromated Mo-K $\alpha$  radiation. Crystal data and details of refinement are given in Table 5.

Lorentz, polarisation and adsorption (azimuthal scans; minimum, maximum transmission 0.85, 1.00) corrections were applied.

**Table 3** Selected bond lengths (Å) and angles (°) in PhMe<sub>2</sub>PI<sub>2</sub>

| I(1)-I(2)<br>I(1)-P<br>P-C(1) | 3.408(2)<br>2.410(2)<br>1.784(8) | P-C(2)<br>P-C(3) | 1.773(9)<br>1.783(6) |
|-------------------------------|----------------------------------|------------------|----------------------|
| I(1)-P-C(1)                   | 109.6(3)                         | C(1)-P-C(3)      | 110.4(4)             |
| I(1)-P-C(2)                   | 108.6(3)                         | C(2)-P-C(3)      | 110.7(4)             |
| I(1)-P-C(3)                   | 108.6(2)                         | P-C(1)-C(4)      | 120.4(5)             |
| C(1)-P-C(2)                   | 108.9(5)                         | P-C(3)-C(8)      | 120.5(6)             |

 
 Table 4
 Fractional atomic coordinates for the non-hydrogen atoms in
PhMe<sub>2</sub>PI<sub>2</sub>

| Atom | x           | У            | Ζ           |
|------|-------------|--------------|-------------|
| I(1) | 0.265 71(6) | 0.093 27(4)  | 0.084 69(4) |
| I(2) | 0.251 34(6) | -0.235 66(4) | 0.086 15(4) |
| P    | 0.290 8(2)  | 0.325 1(2)   | 0.084 3(1)  |
| C(1) | 0.128(1)    | 0.396 8(8)   | 0.121 8(7)  |
| C(2) | 0.279(1)    | 0.376(1)     | -0.0396(7)  |
| C(3) | 0.481 8(7)  | 0.369 2(6)   | 0.168 9(5)  |
| C(4) | 0.490(1)    | 0.465 0(7)   | 0.240 7(6)  |
| C(5) | 0.637(1)    | 0.498 9(9)   | 0.305 4(7)  |
| C(6) | 0.777(1)    | 0.434 6(9)   | 0.301 0(7)  |
| C(7) | 0.771(1)    | 0.339(1)     | 0.231 4(7)  |
| C(8) | 0.622(1)    | 0.307 9(8)   | 0.165 2(6)  |



Fig. 4 The crystal structure of molecular PhMe<sub>2</sub>PI<sub>2</sub>

The structure was solved by direct methods.<sup>15</sup> The nonhydrogen atoms were refined anisotropically. Hydrogen atoms were refined isotropically. Neutral atom scattering factors were taken from ref. 16a. Anomalous dispersion effects were included in  $F_{\text{cale}}$ ; the values for  $\Delta f'$  and  $\Delta f''$  were taken from ref. 16b. All calculations were performed using the TEXSAN crystallographic software package.1

Additional material available from the Cambridge Crystallographic Data Centre comprises H-atom coordinates, thermal parameters and remaining bond lengths and angles.

Table 5 Crystal data and details of refinement for PhMe<sub>2</sub>PI<sub>2</sub>

| 14                                                                                                                                       | 201.04                     |
|------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|
| M Crustel susters                                                                                                                        | 391.90                     |
| Crystal system                                                                                                                           | Monoclinic                 |
| Space group                                                                                                                              | $P2_1/n$ (no. 14)          |
| a/A                                                                                                                                      | 8.560(6)                   |
| $b/\mathbf{A}$                                                                                                                           | 10.353(7)                  |
| c/A                                                                                                                                      | 13.874(5)                  |
| β/°                                                                                                                                      | 106.36(3)                  |
| $U/Å^3$                                                                                                                                  | 1180(2)                    |
| Ζ                                                                                                                                        | 4                          |
| $D_{\rm c}/{\rm g~cm^{-3}}$                                                                                                              | 2.207                      |
| F(000)                                                                                                                                   | 720                        |
| $\mu/cm^{-1}$                                                                                                                            | 53.59                      |
| Total data measured                                                                                                                      | 2370                       |
| Maximum 20/°                                                                                                                             | 50.1                       |
| No. unique reflections                                                                                                                   | 2216                       |
| No. observed reflections $[I > 2.00 \sigma(I)]$                                                                                          | 1597                       |
| No. of parameters                                                                                                                        | 145                        |
| $\rho_{\rm min, max}/e {\rm \AA}^{-3}$                                                                                                   | -1.27, 1.07                |
| Maximum least-squares shift-to-error ratio                                                                                               | 0.14                       |
| Weighting scheme parameter g in                                                                                                          | 0.03                       |
| $w = 1/[\sigma^2(F) + gF^2]$                                                                                                             |                            |
| Final R"                                                                                                                                 | 0.034                      |
| Final R' <sup>b</sup>                                                                                                                    | 0.039                      |
| <sup><i>a</i></sup> $R = \Sigma  F_{o}  -  F_{c} / F_{o} $ . <sup><i>b</i></sup> $R' = [\Sigma w( F_{o}  -  F_{c} )^{2}/\Sigma w F_{o} $ | $[0 ^{2}]^{\frac{1}{2}}$ . |

# Acknowledgements

We thank Mr P. J. Kobryn (University of Manchester) for recording the Raman spectra. We are also grateful to Dr M. W. Anderson and Ms B. Gore for access to MAS solid-state NMR facilities. One of us (N. B.) is grateful to the SERC and Johnson Matthey plc for a CASE award.

## References

- 1 A. Michaelis, *Liebigs. Ann. Chem.*, 1876, **181**, 256. 2 G. M. Kosalopoff and L. Maier (editors), in *Organic Phosphorus* Compounds, Wiley Interscience, New York, 1972.
- 3 N. Bricklebank, S. M. Godfrey, A. G. Mackie, C. A. McAuliffe, R. G. Pritchard and P. J. Kobryn, J. Chem. Soc., Dalton Trans., 1993, 101.
- 4 S. M. Godfrey, D. G. Kelly, A. G. Mackie, C. A. McAuliffe, R. G. Pritchard and S. M. Watson, J. Chem. Soc., Chem. Commun., 1991, 1163
- 5 W. W. duMont, M. Batcher, S. Pohl and W. Saak, Angew. Chem., Int. Ed. Engl., 1987, 26, 912.
- 6 F. W. Parrett, Spectrochim. Acta, Part A, 1969, 25, 1271.
- 7 J. Goubeau and R. Baumgartner, Z. Electrochem., 1960, **64**, 598. 8 A. Finch, P. N. Gates and A. S. Muir, J. Raman Spectrosc., 1988, **19**, 91.
- 9 A. D. Beveridge and G. S. Harris, J. Chem. Soc., 1964, 6077; A. D. Beveridge, G. S. Harris and F. Inglis, J. Chem. Soc. A, 1966, 520; A. D. Beveridge, G. S. Harris and D. S. Payne, J. Chem. Soc. A, 1966, 726; G. S. Harris and M. F. Ali, Tetrahedron Lett., 1968, 37; Inorg. Nucl. Chem. Lett., 1968, 4, 37; 1968, 4, 5; M. F. Ali and G. S. Harris, J. Chem. Soc., Dalton Trans., 1980, 1545; G. S. Harris and J. S. McKechnie, Polyhedron, 1985, 4, 115.
- 10 M. A. H. A. Al-Juboori, P. N. Gates and A. S. Muir, J. Chem. Soc., Chem. Commun., 1991, 1270.
- 11 K. B. Dillon and T. C. Waddington, Nature (London), 1971, 230, 158.
- 12 A. I. Popov and R. F. Svensen, J. Am. Chem. Soc., 1955, 77, 3724.
- 13 H. J. Emeleus and G. S. Harris, J. Chem. Soc., 1959, 1494.
- 14 F. A. Cotton and P. A. Kibala, J. Am. Chem. Soc., 1987, 109, 3308.
- 15 G. M. Sheldrick, SHELXS 86 in Crystallographic Computing 3, ed. G. M. Sheldrick, Oxford University Press, 1985, p. 175.
- 16 International Tables for X-Ray Crystallography, Kynoch Press, Birmingham, 1974, vol. 4, (a) Table 2.2A; (b) Table 2.3.1.
- 17 TEXSAN-TEXRAY Structure Analysis Package, Molecular Structure Corporation, Houston, TX, 1985.

Received 22nd February 1995; Paper 5/01068C